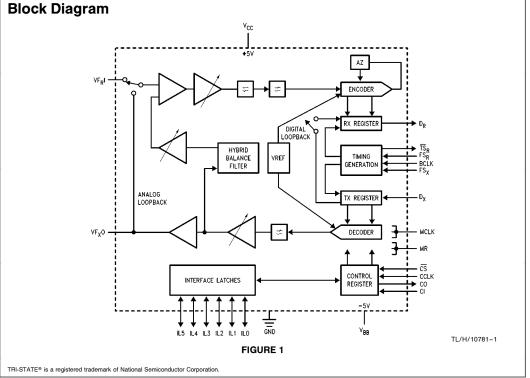


NS32FX210 Facsimile/Data Modem Analog Front End (AFE)

General Description

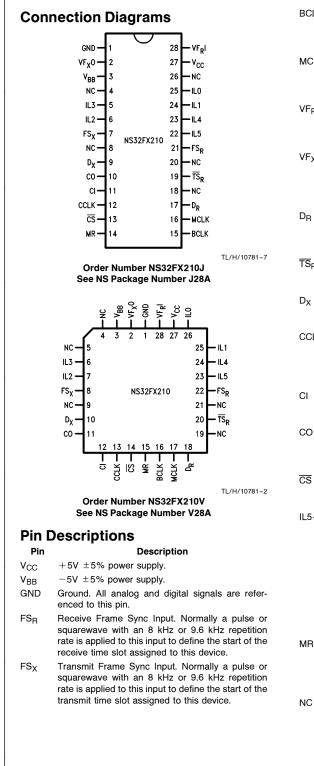
The NS32FX210 is a highly integrated A/D and D/A Converters with Filtering device optimized for FAX and data modem analog front end applications. Using advanced switched capacitor techniques, AFE combines receive bandpass and transmit lowpass channel filters with a companding PCM encoder and decoder. The device employs a conventional serial PCM interface capable of being clocked at 1.536 MHz. A number of programmable functions may be controlled via a serial control port.


Channel gains are programmable over a 25.4 dB range in each direction, and a programmable filter is included to enable Hybrid Balancing to be adjusted to suit a wide range of loop impedance conditions. Both transformer and active Data Access Arrangement (DAA) circuits with real or complex termination impedances can be balanced by this filter, with cancellation in excess of 30 dB being readily achievable when measured across the passband against standard test termination networks.

To enable AFE to interface to the DAA circuit, six programmable latches are included; each may be configured as either an input or an output.

Features

- Transmit and receive PCM channel filters
- µ-law companding encoder and decoder
- \blacksquare Transmit power amplifier drives 300 Ω
- 1.536 MHz serial PCM data
- Programmable Functions:
- Receive gain: 25.4 dB range, 0.1 dB steps
 Transmit gain: 25.4 dB range, 0.1 dB steps
- Hybrid balance cancellation filter
- 6 interface latches
- Analog loopback
- Digital loopback
- Direct interface to single secondary winding line transformer
- Standard serial control interface
- 80 mW operating power (typ)
- 1.5 mW standby power (typ)
- TTL and CMOS compatible digital interfaces



© 1995 National Semiconductor Corporation TL/H/1078

RRD-B30M115/Printed in U. S. A

PRELIMINARY November 1990

- MCLK Master clock input used by the switched capacitor filters and the encoder and decoder sequencing logic. Must be 1.536 MHz and synchronous with BCLK.
- VF_RI The Receive analog high-impedance input. Voice frequency signals present on this input are encoded as a μ-law PCM bit stream and shifted out on the D_R pin.
- VF_XO The Transmit analog power amplifier output, capable of driving load impedances as low as 300Ω (depending on the peak overload level required). PCM data received on the D_X pin is decoded and appears at this output as voice frequency signals.
 - This Receive Data TRI-STATE® output remains in the high impedance state except during the receive time slot during which the receive PCM data byte is shifted out on the rising edges of BCLK.
- $\overline{\text{TS}}_R \qquad \text{Normally this open-drain output is floating in a high impedance state. It pulls low when a time-slot is active on the D_R output.}$
 - K This transmit data input is inactive except during the transmit time slot when the transmit PCM data is shifted in on the falling edges of BCLK.
- - Serial control data is shifted into the AFE via this pin when $\overline{\text{CS}}$ is low. It can be connected to CO if required.
 - Serial control data is read out of AFE via this pin when \overline{CS} is low and a read has been requested in Byte 1 of the control instruction. It can be connected to CI if required.
 - Chip Select Input. When this pin is low, control information can be written to or read from AFE via the Cl and CO pin.
- IL5–IL0 Each Interface Latch I/O pin may be individually programmed as an input or an output determined by the state of the corresponding bit in the Latch Direction Register (LDR). For pins configured as inputs, the logic state sensed on each input is latched into the Interface Latch Register (ILR) whenever control data is written to the AFE, while \overline{CS} is low, and the information is shifted out on the CO pin. When configured as outputs, control data written into the ILR appears at the corresponding IL pins.
 - This logic input must be pulled low for normal operation of the AFE. When pulled momentarily high (at least 1 μ s), all programmable registers in the device are reset to the states specified under "Power-On Initialization".
 - No Connection. Do not connect to this pin. Do not route traces through this pin.

Functional Description

POWER-ON INITIALIZATION

When power is first applied, power-on reset circuitry initializes the AFE and puts it into the power-down state. The gain control registers for the transmit and receive gain sections are programmed to OFF (0000000), the hybrid balance circuit is turned off and the power amp is disabled. The Latch Direction Register (LDR) is pre-set with all IL pins programmed as inputs, placing the DAA interface pins in a high impedance state. Other initial states in the Control Register are indicated in Section 2.0.

A reset to these same initial conditions may also be forced by driving the MR pin momentarily high. This may be done either when powered-up or down. For normal operation this pin must be pulled low. If not used, MR should be hardwired to ground.

The desired modes for all programmable functions may be initialized via the control port prior to a Power-up command.

POWER-DOWN STATE

Following a period of activity in the powerd-up state the power-down state may be re-entered by writing any of the control instructions into the serial control port with the "P" bit set to "1" as indicated in Table I. It is recommended that the chip be powered down before writing any additional instructions. In the power-down state, all non-essential circuitry is de-activated and the D_R output is in the high impedance TRI-STATE condition.

The coefficients stored in the Hybrid Balance circuit and the Gain Control registers, the data in the LDR and ILR, and all control bits remain unchanged in the power-down state unless changed by writing new data via the serial control port, which remains active. The outputs of the Interface Latches also remain active, maintainng the ability to monitor and control the DAA.

RECEIVE FILTER AND ENCODER

The receive section input, VF_RI, is a high impedance summing input which is used as the differencing point for the internal hybrid balance cancellation signal. No external components are necessary to set the gain. Following this circuit is a programmable gain amplifier which is controlled by the contents of the Receive Gain Register (see Programmable Functions section). An active pre-filter then precedes the 3rd order high-pass and 5th order low-pass switched capacitor filters. The A/D converter has a compressing characteristic according to the standard μ 255 coding law. A

precision on-chip voltage reference ensures accurate and highly stable transmission levels. Any offset voltage arising in the gain-set amplifier, the filters or the comparator is canceled by an internal auto-zero circuit.

Each encode cycle begins immediately following the Receive time-slot. The total signal delay referenced to the start of the time-slot is approximately 165 μ s (due to the Receive Filter) plus 125 μ s (due to encoding delay), which totals 290 μ s. Data is shifted out on D_R during the time slot on eight rising edges of BCLK.

DECODER AND TRANSMIT FILTER

PCM data is shifted into the Decoder's Transmit PCM Register via the D_X pin during the time-slot on the 8 falling edges of BCLK. The Decoder consists of an expanding DAC with $\mu255$ law decoding characteristic. Following the Decoder is a 5th order low-pass switched capacitor filter with integral Sin x/x correction for the 8 kHz or 9.6 kHz sample and hold. A programmable gain amplifier, which must be set by writing to the Transmit Gain Register, is included, and finally a Power Amplifier capable of driving a 300 Ω load to $\pm 3.8V$ or a 15 k Ω load to $\pm 4.0V$ at peak overload.

A decode cycle begins immediately after the transmit timeslot, and 10 μ s later the Decoder DAC output is updated. The total signal delay is 10 μ s plus 120 μ s (filter delay) plus 62.5 μ s ($\frac{1}{2}$ frame) which gives approximately 190 μ s.

PCM INTERFACE

The FS_R and FS_X frame sync inputs determine the beginning of the 8-bit receive and transmit time-slots respectively. They may have any duration from a single cycle of BCLK HIGH to one MCLK period LOW.

Two different relationships may be established between the frame sync inputs and the actual time-slots on the PCM busses by setting bit 3 in the Control Register (see Table II). In Non-delayed Data Timing mode, time-slots begin nominally coincident with the rising edge of the appropriate FS input. The alternative is to use Delayed Data Timing mode in which each FS input must be high at least a half-cycle of BCLK earlier than the time-slot.

Receive and Transmit frames and time-slots may be skewed from each other by any number of BCLK cycles. During each Receive time-slot, the D_R output shifts data out from the PCM register on the rising edges of BCLK. TS_R also pulls low for the first 7½ bit times of the time-slot. Serial PCM data is shifted into the D_X input during each Transmit time-slot on the falling edges of BCLK.

Functional Description (Continued)

SERIAL CONTROL PORT

Control information and data are written into or read-back from the AFE via the serial control port consisting of the control clock CCLK, the serial data input, Cl, and output, CO, and the Chip Select input, \overline{CS} . All control instructions require 2 bytes, as listed in Table I, with the exception of a single byte power-up/down command. The byte 1 bits are used as follows: bit 7 specifies power up or power down; bits 6, 5, 4, and 3 specify the register address; bit 2 specifies whether the instruction is read or write; bit 1 specifies a one or two byte instruction; and bit 0 is not used.

To shift control data into the AFE, CCLK must be pulsed 8 times while \overline{CS} is low. Data on the Cl input is shifted into the serial input register on the falling edge of each CCLK pulse. After all data is shifted in, the contents of the input shift register are decoded, and may indicate that a 2nd byte of control data will follow. This second byte may either be defined by a second byte-wide \overline{CS} pulse or may follow the first contiguously, i.e., it is not mandatory for \overline{CS} to return high between the first and second control bytes. At the end of CCLK8 in the 2nd control byte the data is loaded into the appropriate programmable register. \overline{CS} may remain low continuously when programming successive registers, if desired. However, \overline{CS} should be set high when no data transfers are in progress.

To readback Interface Latch data or status information from the AFE, the first byte of the appropriate instruction is strobed in during the first \overline{CS} pulse, as defined in Table I. \overline{CS} must then be taken low for a further 8 CCLK cycles, during which the data is shifted onto the CO pin on the rising edges

of CCLK. When \overline{CS} is high the CO pin is in the high-impedance TRI-STATE, enabling the CO pins of many devices to be bussed together.

Programmable Functions

1.0 POWER-UP/DOWN CONTROL

Following power-on initialization, power-up and power-down control may be accomplished by writing any of the control instuctions listed in Table I into the AFE with the "P" bit set to "0" for power-up or "1" for power-down. Normally it is recommended that all programmable functions be initially programmed while the device is powered down. Power state control can then be included with the last programming instruction or the separate single-byte instruction. Any of the programmable registers may also be modified while the device is powered-up or down by setting the "P" bit as indicated. When the power-up or down control is entered as a single byte instruction, bit one (1) must be reset to a 0.

When a power-up command is given, all de-activated circuits are activated, but the TRI-STATE PCM output, D_R , will remain in the high impedance state until the second FS_R pulse after power-up.

2.0 CONTROL REGISTER INSTRUCTION

The first byte of a READ or WRITE instruction for the Control Register is as shown in Table I. The second byte has the bit functions shown in Table II.

	IAE		Progr	amma	ible H	egist	erins	truction	ons							
Function			B	yte 1 (Note	1)					By	/te 2 (Note	1)		
Tunction	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
Single Byte Power-Up/Down	Р	х	х	х	х	х	0	х				No	ne			
Write Control Register	Р	0	0	0	0	0	1	Х			5	See Ta	able II			
Read-Back Control Register	Р	0	0	0	0	1	1	Х			5	See Ta	able II			
Write to Interface Latch Register	Р	0	0	0	1	0	1	х			s	ee Ta	ble V			
Read Interface Latch Regiser	Р	0	0	0	1	1	1	Х	n.		S	ee Ta	ble V			
Write Latch Direction Register	Р	0	0	1	0	0	1	х	See Table IV							
Read Latch Direction Register	Р	0	0	1	0	1	1	Х			S	iee Ta	ble IV	'		
Write Transmit Gain Register	Р	0	1	0	0	0	1	х			S	ee Ta	ble VI			
Read Transmit Gain Register	Р	0	1	0	0	1	1	Х			S	ee Ta	ble VI			
Write Receive Gain Register	Р	0	1	0	1	0	1	х			S	See Ta	able V	11		
Read Receive Gain Register	Р	0	1	0	1	1	1	Х			S	See Ta	able V	11		
Write Transmit PCM Enable/Disable	Р	1	0	0	1	0	1	Х				(Not	ie 4)			
Read Transmit PCM Enable/Disable	Р	1	0	0	1	1	1	X (Note 4)								
Write Receive PCM Enable/Disable	Р	1	0	1	0	0	1	х				(No	ie 4)			
Read Receive PCM Enable/Disable	Р	1	0	1	0	1	1	Х				(Not	e 4)			

Note 1: Bit 7 of bytes 1 and 2 is always the first bit clocked into or out from the CI or CO pin. X = don't care.

Note 2: "P" is the power-up/down control bit, see "Power-Up/Down Control" section. ("0" = Power Up, "1" = Power Down)

Note 3: Three additional registers are provided for the Hybrid Balance Fitler, see Section 8.0. Other register address codes are invalid and should not be used. Note 4: Enable code = 1000 0000, Disable Code = 0000 0000

Programmable Functions (Continued)

TABLE II. Control Register Byte 2 Functions

		T/	ARLE	= II. C	contr	OI Re	egist	er Byte 2 Functions			
		E	Bit Nu	umbe	er			Function			
7	6	5	4	3	2	1	0	Function			
0	1	0	0					(Note 1)			
				0 1				Delayed Data Timing Non-Delayed Data Timing*			
					0 1 0	0 X 1		Normal Operation* Digital Loopback Analog Loopback			
							0 1	Power Amp Enabled in PDN Power Amp Disabled in PDN*			

* = State at power-on initialization (Bits 7, 6, 5, 4 = 1, 0, 0, 0).

Note 1: Bits 7, 6, 5, 4 must always be programmed to 0, 1, 0, 0.

2.1 Analog Loopback

Analog Loopback mode is entered by setting the "AL" and "DL" bits in the Control Register as shown in Table II. In the analog loopback mode, the Receive input VF_RI is isolated from the input pin and internally connected to the VF_XO output, forming a loop from the Transmit PCM Register back to the Receive PCM Register. The VF_XO pin remains active, and the programmed settings of the Receive and Transmit gains remain unchanged, thus care must be taken to ensure that overload levels are not exceeded anywhere in the loop. Hybrid balance must be disabled for meaningful analog loopback function.

2.2 Digital Loopback

Digital Loopback mode is entered by setting the "AL" and "DL" bits in the Control Register as shown in Table II. This mode provides another stage of path verification by enabling data written into the Transmit PCM Register to be read back from that register in the Receive time-slot at D_R. In digital loopback, the decoder will remain functional and output a signal at VF_XO. If this is undesirable, the transmit gain register to all zeros.

TABLE III. Coding Law Convention

			ŀ	ι 25 5	Lav	v		
	MS	SB					Ľ	SB
$V_{IN} = + Full Scale$	1	0	0	0	0	0	0	0
$V_{\rm m} = 0V$	1	1	1	1	1	1	1	1
$V_{IN} = 0V$ {	0	1	1	1	1	1	1	1
V _{IN} = -Full Scale	0	0	0	0	0	0	0	0
L								

Note 1: The MSB is always the first PCM bit shifted in or out of the AFE.

3.0 INTERFACE LATCH DIRECTIONS

Immediately following power-on, all Interface Latches assume they are inputs, and therefore all IL pins are in a high impedance state. Each IL pin may be individually programmed as a logic input or output by writing the appropriate instruction to the LDR, see Tables I and IV. For minimum power dissipation, unconnected latch pins should be programmed as outputs. Bits L_5-L_0 must be set by writing the specified instruction to the LDR with the L bits in the second byte set as follows:

TABLE IV. By	vte 2 Functions o	Latch Direction	Register
--------------	-------------------	-----------------	----------

Byte 2 Bit Number												
7	6	5	4	3	2	1	0					
L ₀	L ₁	L ₂	L ₃	L_4	L_5	Х	Х					
					Direct	lan						
	L _n B	π			_ Direct	ION						

0	Input
1	Output
X = Don't Care	

x - Dunt Gale

4.0 INTERFACE LATCH STATES

Interface Latches configured as outputs assume the state determined by the appropriate data bit in the 2-byte instruction written to the Interface Latch Register (ILR) as shown in Tables I and V. Latches configured as inputs will sense the state applied by an external source, such as the ring detect output of a DAA. All bits of the ILR, i.e., sensed inputs and the programmed state of outputs, can be read back in the 2nd byte of a READ from the ILR.

It is recommended that during initialization, the state of IL pins to be configured as outputs should be programmed first, followed immediately by the Latch Direction Register.

	TABLE	v. inte	rtace L	atch Da	ta Bit O	raer					
Bit Number											
7	6	5	4	3	2	1	0				
D ₀	D ₁	D ₂	D ₃	D ₄	D_5	х	х				

Programmable Functions (Continued)

5.0 RECEIVE GAIN INSTRUCTION BYTE 2

The receive gain can be programmed in 0.1 dB steps by writing to the Receive Gain Register as defined in Tables I and VI. This corresponds to a range of 0 dBm0 levels at VF_RI between 1.619 V_{rms} and 0.087 V_{rms} (equivalent to +6.4 dBm to -19.0 dBm in 600 Ω).

To calculate the binary code for byte 2 of this instruction for any desired input 0 dBm0 level in V_{rms}, take the nearest integer to the decimal number given by:

 $200\times log_{10}$ (V/0.08595)

and convert to the binary equivalent. Some examples are given in Table VI.

TABLE VI. Byte 2 of Receive Gain Instruction

		Bi	t Nu	ımb	er			0 dBm0 Test Level (V _{rms})
7	6	5	4	3	2	1	0	at VF _R I
0	0	0	0	0	0	0	0	No Output
0	0	0	0	0	0	0	1	0.087
0	0	0	0	0	0	1	0	0.088
			-	_				_
1	1	1	1	1	1	1	0	1.600
1	1	1	1	1	1	1	1	1.619

6.0 TRANSMIT GAIN INSTRUCTION BYTE 2

The transmit gain can be programmed in 0.1 dB steps by writing to the Transmit Gain Register as defined in Tables I and VII. Note the following restrictions on output drive capability:

- a. 0 dBm0 levels \leq 1.96 Vrms at VF_XO may be driven into a load of \geq 15 k\Omega to GND; transmit gain set to 0 dB
- b. 0 dBm0 levels \leq 1.85 V_{rms} at VF_XO may be driven into a load of \geq 600 Ω to GND; transmit gain set to -0.5 dB
- c. 0 dBm0 levels \leq 1.71 Vrms at VF_XO may be driven into a load of \geq 300 Ω to GND; transmit gain set to -1.2 dB

To calculate the binary code for byte 2 of this instruction for any desired output 0 dBm0 level in V_{rms}, take the nearest integer to the decimal number given by:

 $\rm 200 \times log_{10}~(V/0.1043)$

and convert to the binary equivalent. Some examples are given in Table VII.

TABLE VII. Byte 2 of Transmit Instruction

		Bi	t Nu	ımb	er			0 dBm0 Test Level (V _{rms})
7	6	5	4	3	2	1	0	at VF _X O
0	0	0	0	0	0	0	0	No Output (Low Z to GND)
0	0	0	0	0	0	0	1	0.105
0	0	0	0	0	0	1	0	0.107
			_	_				—
1	1	1	1	1	1	1	0	1.941
1	1	1	1	1	1	1	1	1.964

7.0 PCM INTERFACE ENABLE/DISABLE

When power is first applied to the device pins, the PCM interface is disabled. To enable the PCM interface, both transmit and receive PCM Enable/Disable registers must be written with the enable code (1000 0000). See Table I.

8.0 HYBRID BALANCE FILTER

The Hybrid Balance Filter on the AFE is a programmable filter consisting of a second-order section, Hybal1, followed by a first-order section, Hybal2, and a programmable attenuator. Either of the filter sections can be bypassed if only one is required to achieve good cancellation. A selectable 180 degree inverting stage is included to compensate for interface circuits which also invert the receive input relative to the transmit output signal. The 2nd order section is intended mainly to balance low frequency signals across a transformer DAA, and the first order section to balance midrange to higher audio frequency signals.

As a 2nd order section, Hybal1 has a pair of low frequency zeroes and a pair of complex conjugate poles. When configuring Hybal1, matching the phase of the hybrid at low to mid-band frequencies is most critical. Once the echo path is correctly balanced in phase, the magnitude of the cancellation signal can be corrected by the programmable attenuator.

The 2nd order mode of Hybal1 is most suitable for balancing interfaces with transformers having high inductance of 1.5 Henries or more. An alternative configuration for smaller transformers is available by converting Hybal1 to a simple first-order section with a single real low-frequency pole and zero. In this mode, the pole/zero frequency may be programmed.

Many line interfaces can be adequately balanced by use of the Hybal1 section only, in which case the Hybal2 filter should be de-selected to bypass it.

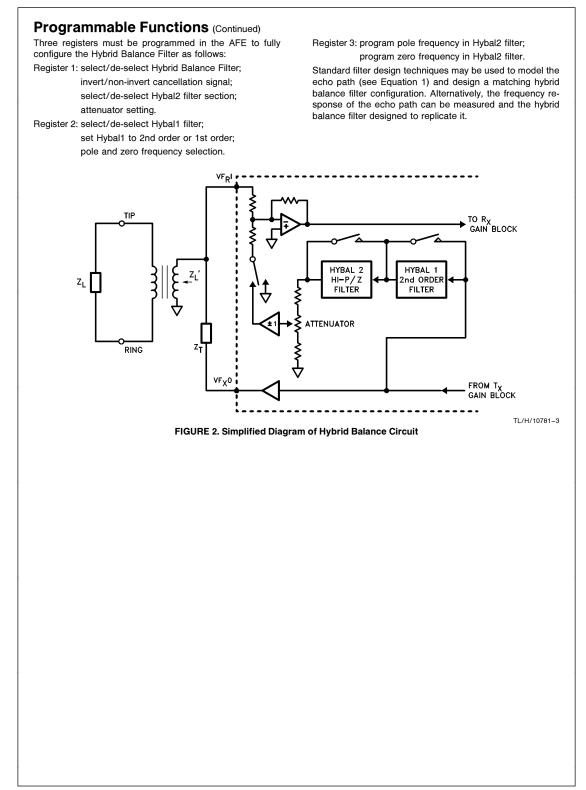

Hybal2, the higher frequency first-order section, is provided for balancing an electronic DAA and is also helpful with a transformer DAA in providing additional phase correction for mid and high-band frequencies, typically 1 kHz to 3.4 kHz. Such a correction is particularly useful if the test balance impedance includes a capacitor of 100 nF or less. Independent placement of the pole and zero location is provided.

Figure 2 shows a simplified diagram of the local echo path for a typical application with a transformer interface. The magnitude and phase of the local echo signal, measured at VF_RI are a function of the termination impedance Z_T, the line transformer and the impedance of the 2W loop, Z_L. If the impedance reflected back into the transformer primary is expressed as Z_L' then the echo path transfer function from VF_XO to VF_RI is:

$$H(w) = Z_{L}'/(Z_{T} + Z_{L}')$$
(1)

8.1 Programming the Filter

When power is first applied, the Hybrid Balance filter is disabled. Before the hybrid balance filter can be programmed it is necessary to design the transformer and termination impedance in order to meet system 2W input return loss specifications, which are normally measured against a fixed test impedance (600 Ω or 900 Ω in most countries). Only then can the echo path be modeled and the hybrid balance filter programmed. Hybrid balancing is also measured against a fixed test impedance. This test impedance is Z_L in *Figure 2*. The echo signal and the degree of transhybrid loss obtained by the programmable filter must be measured from the PCM digital input, D_X, to the PCM digital output, D_R, either by digital test signal analysis or by conversion back to analog by another AFE device.

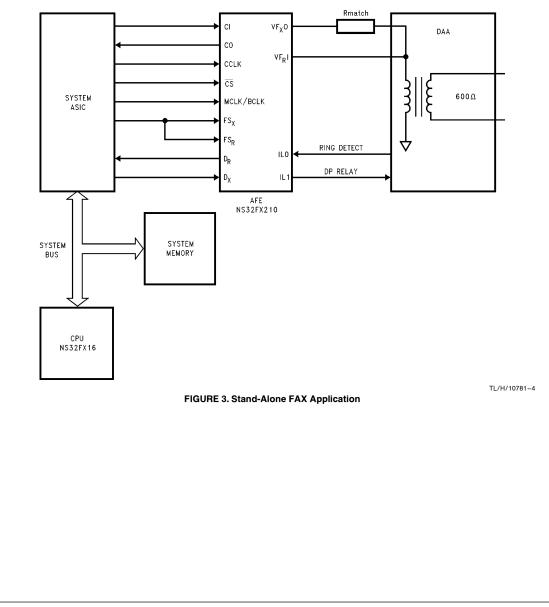

Applications Information

Figure 3 shows a typical application of the AFE together with a transformer-based DAA. One of the IL latches is configured as an output to control the relay driver on the DAA while another is an input for the ring detect signal.

POWER SUPPLIES

While the pins of the AFE device are well protected against electrical misuse, it is recommended that the standard CMOS practice of applying GND to the device before any other connections are made should always be followed. In applications where the printed circuit card may be plugged into a hot socket with power and clocks already present, extra long pins on the connector should be used for ground and $V_{BB}.$ In addition, a Schottky diode should be connected between V_{BB} and ground.

To minimize noise sources, all ground connections to each device should meet at a common point as close as possible to the device GND pin in order to prevent the interaction of ground return currents flowing through a common bus impedance. Power supply decoupling capacitors of 0.1 μF should be connected from this common device ground point to V_{CC} and V_{BB} as close to the device pins as possible. V_{CC} and V_{BB} should also be decoupled with Low Effective Series Resistance Capacitors of at least 10 μF located near the card edge connector.

Absolute Maximu	m Ratings		
If Military/Aerospace spec	cified devices are required,	Storage Temperature Range	-65°C to +150°C
•	onal Semiconductor Sales	V _{BB} to GND	-7V
Office/Distributors for ava	, ,	Current at VF _X O	\pm 100 mA
V _{CC} to GND	7V	Current at any Digital Output	\pm 50 mA
Voltage at VF _R I	V_{CC} $+$ 0.5V to V_{BB} $-$ 0.5V	Lead Temperature (Soldering, 10 sec.)	300°C
Voltage at any Digital Input	$V_{CC}+0.5V$ to GND $-0.5V$	2000 1000000000000000000000000000000000	

Electrical Characteristics Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$; $T_A = 0^{\circ}C$ to $+70^{\circ}C$ by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GND. Typicals specified at $V_{CC} = +5V$, $V_{BB} = -5V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
IGITAL IN	TERFACES					
V _{IL}	Input Low Voltage	All Digital Inputs (DC Meas.)*			0.7	v
VIH	Input High Voltage	All Digital Inputs (DC Meas.)*	2.0			v
V _{OL}	Output Low Voltage	D_R , \overline{TS}_R and CO, $I_L = 3.2 \text{ mA}$, All Other Digital Outputs, $I_L = 1 \text{ mA}$			0.4	V
V _{OH}	Output High Voltage	D_R and CO, $I_L = -3.2$ mA, All Other Digital Outputs (except \overline{TS}_R), $I_L = -1$ mA All Digital Outputs, $I_L = -100 \ \mu A$	2.4	,		v v
IIL	Input Low Current	Any Digital Input, GND $< V_{IN} < V_{IL}$	V _{CC} -0.5		10	ν μΑ
ι <u>ι</u> I _{IH}	Input Low Guiterit	Any Digital Input Except MR, $V_{IH} \leq V_{IN} \leq V_{CC}$	-10		10	μΑ
		MR Only	- 10		100	μΑ
I _{OZ}	Output Current in High Impedance State (TRI-STATE)	D_{R} and CO IL5–IL0 When Selected as Inputs GND $<$ V_{OUT} $<$ V_{CC}	- 10		10	μΑ
NALOG IN	ITERFACES					
I _{VFRI}	Input Current, VF _R I	$-3.3V < VF_{R}I < 3.3V$	- 10.0		10.0	μΑ
R _{VFRI}	Input Resistance	$-3.3V < VF_{R}I < 3.3V$	390	620		kΩ
VOS _R	Input Offset Voltage Applied at VF _R I	Receive Gain $= 0 \text{ dB}$ Receive Gain $= 25.4 \text{ dB}$			200 10	m∨ m∨
RL _{VFXO}	Load Resistance	Transmit Gain = 0 dB Transmit Gain = -0.5 dB Transmit Gain = -1.2 dB	15k 500 300			Ω
CL _{VFXO}	Load Capacitance	$\label{eq:RLVFXO} \begin{split} &RL_{VFXO} \geq 300\Omega \\ &CL_{VFXO} \text{ from VF}_XO \text{ to GND} \end{split}$			200	pF
RO _{VFXO}	Output Resistance	Steady Zero PCM Code Applied to D _X		1.0	3.0	Ω
VOS _X	Output Offset Voltage at V _{FXO}	Alternating \pm Zero PCM Code Applied to D_{X_1} 0 dB Transmit Gain	-200		200	m٧

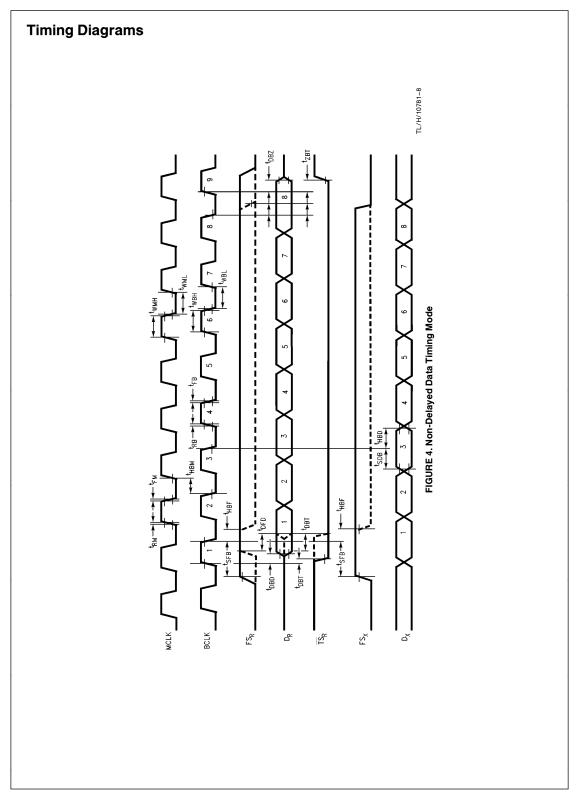
Electrical Characteristics (Continued)

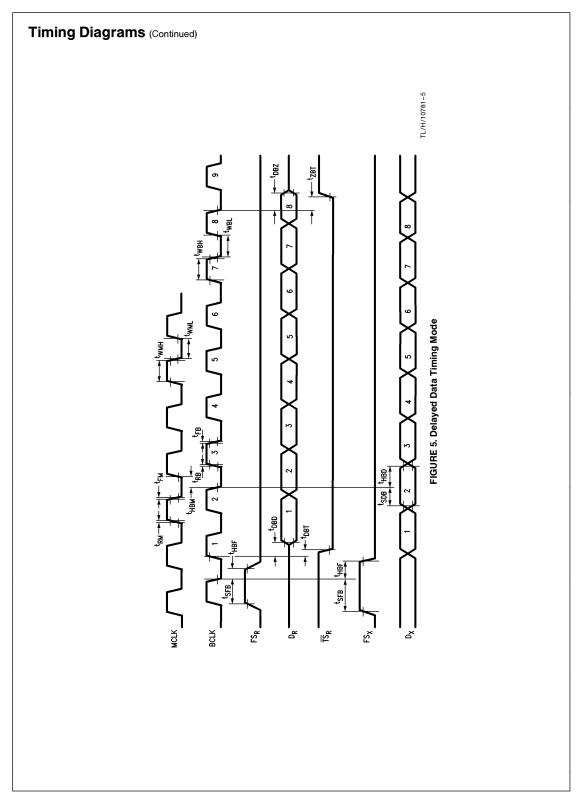
Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$; $T_A = 0^{\circ}C$ to $+70^{\circ}C$ by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GND. Typicals specified at $V_{CC} = +5V$, $V_{BB} = -5V$, $T_A = 25^{\circ}C$.

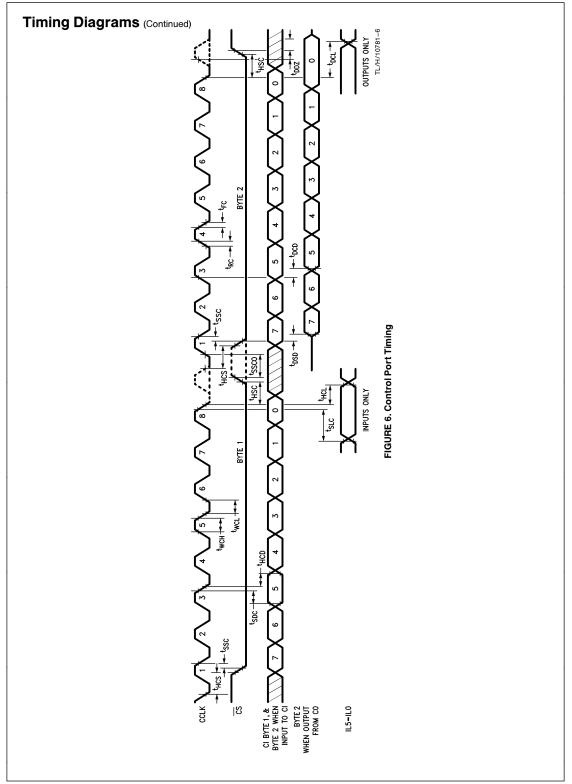
Symbol	Parameter	Conditions	Min	Тур	Max	Units
OWER DISS	IPATION					
I _{CC} 0	Power Down Current	CCLK, CI, CO, = 0.4 V, \overline{CS} = 2.4 V Interface Latches Set as Outputs with No Load, All Other Inputs Active, Power Amp Disabled		0.1	0.6	mA
I _{BB} 0	Power Down Current	As Above		-0.1	-0.3	mA
I _{CC} 1	Power Up Current	CCLK, CI, CO = $0.4V$, $\overline{CS} = 2.4V$ No Load on Power Amp Interface Latches Set as Outputs with No Load		8.0	11.0	mA
I _{BB} 1	Power Up Current	As Above		-8.0	- 1 1.0	mA
I _{CC} 2	Power Down Current	Power Amp Enabled		2.0	3.0	mA
I _{BB} 2	Power Down Current	Power Amp Enabled		-2.0	- 3.0	mA

Timing Specifications

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5V \pm 5\%$; $V_{BB} = -5V \pm 5\%$; $T_A = 0^{\circ}C$ to $+70^{\circ}C$ by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GND. Typicals specified at $V_{CC} = +5V$, $V_{\mbox{\scriptsize BB}}=~-5V,\,T_{\mbox{\scriptsize A}}=~25^{\circ}\mbox{\scriptsize C}.$


All timing parameters are measured at $V_{\mbox{OH}}$ = 2.0V and $V_{\mbox{OL}}$ = 0.7V.


See Definitions and Timing Conventions section for test methods information.


Symbol	Parameter	Conditions	Min	Тур	Max	Units
ASTER CL	OCK TIMING					
fMCLK	Frequency of MCLK			1536		kHz
t _{WMH}	Period of MCLK High	Measured from V_{IH} to V_{IH}	80			ns
t _{WML}	Period of MCLK Low	Measured from V_{IL} to V_{IL}	80			ns
t _{RM}	Rise Time of MCLK	Measured from V_{IL} to V_{IH}			30	ns
t _{FM}	Fall Time of MCLK	Measured from V_{IH} to V_{IL}			30	ns
t _{HBM}	HOLD Time, BCLK LOW to MCLK HIGH		50			ns
t _{WFL}	Period of F_{SR} or F_{SX} Low	Measured from V_{IL} to V_{IL}	1			MCLK Perio
CM INTERF	ACE TIMING					
f _{BCLK}	Frequency of BCLK	May Vary from 64 kHz to 4096 kHz in 8 kHz Increments	64		4096	kHz
t _{WBH}	Period of BCLK High	Measured from V_{IH} to V_{IH}	80			ns
t _{WBL}	Period of BCLK Low	Measured from V_{IL} to V_{IL}	80			ns
too	Rise Time of BCLK	Measured from V_{IL} to V_{IH}			30	ns
t _{RB}					30	ns

	5V, $T_A = 25$ °C. parameters are measured at V _{OH} =	naracterization. All signals referenced to G			00	,
	itions and Timing Conventions section					
Symbol	Parameter	Conditions	Min	Тур	Мах	Units
CM INTERI	FACE TIMING (Continued)					
t _{HBF}	Hold Time, BCLK Low to FS _{X/R} High or Low		30			ns
tSFB	Setup Time, FS _{R/X} High to BCLK Low		30			ns
t _{DBD}	Delay Time, BCLK High to Data Valid	Load = 100 pF Plus 2 LSTTL Loads			80	ns
^t DBZ	Delay Time, BCLK Low to D_R Disabled if FS _R Low, FS _R Low to D_R Disabled if 8th BCLK Low, or BCLK High to D_R Disabled if FS _R High		15		80	ns
t _{DBT}	Delay Time, BCLK High to $\overline{\text{TS}}_R$ Low if FS _R High, or FS _R High to $\overline{\text{TS}}_R$ Low if BCLK High	Load = 100 pF Plus 2 LSTTL Loads			60	ns
t _{ZBT}	$\begin{array}{l} \mbox{TRI-STATE Time, BCLK Low} \\ \mbox{to \overline{TS}_R High if FS_R Low, FS_R \\ \mbox{Low to \overline{TS}_R High if $8th BCLK$ \\ \mbox{Low, or $BCLK$ High to \overline{TS}_R \\ \mbox{High if FS_R High} \end{array}$		15		60	ns
^t DFD	Delay Time, FS _{X/R} High to Data Valid	Load = 100 pF Plus 2 LSTTL Loads, Applies if FS _{X/R} Rises Later than BCLK Rising Edge in Non-Delayed Data Mode Only			80	ns
t _{SDB}	Setup Time, D _X Valid to BCLK Low		30			ns
^t нвD	Hold Time, BCLK Low to D _X Invalid		20			ns
ERIAL COM	NTROL PORT TIMING					
fCCLK	Frequency of CCLK				2048	kHz
t _{WCH}	Period of CCLK High	Measured from V_{IH} to V_{IH}	160			ns
t _{WCL}	Period of CCLK Low	Measured from V_{IL} to V_{IL}	160			ns
t _{RC}	Rise Time of CCLK	Measured from V_{IL} to V_{IH}			50	ns
t _{FC}	Fall Time of CCLK	Measured from V_{IH} to V_{IL}			50	ns
^t HCS	Hold Time, CCLK Low to CS Low	CCLK1	10			ns
t _{HSC}	Hold Time, CCLK Low to CS High	CCLK8	100			ns
tssc	Setup Time, CS Transition to CCLK Low		60			ns

All timing pa	/, $T_A = 25^{\circ}$ C. arameters are measured at V _{OH} ons and Timing Conventions sec	= 2.0V and V_{OL} = 0.7V. stion for test methods information.				
Symbol	Parameter	Conditions	Min	Тур	Max	Units
ERIAL CONT	ROL PORT TIMING (Continued)					
tssco	Setup Time, CS Transition to CCLK High		80			ns
tSDC	Setup Time, CI Data In to CCLK Low		80			ns
^t HCD	Hold Time, CCLK Low to CI Invalid		50			ns
^t DCD	Delay Time, CCLK High to CO Data Out Valid	Load = 100 pF Plus 2 LSTTL Loads			80	ns
t _{DSD}	Delay Time, CS Low to CO Valid	Applies Only if Separate \overline{CS} used for Byte 2			80	ns
t _{DDZ}	Delay Time, CS or 9th CCLK High to CO High Impedance	Applies to Earlier of \overline{CS} High or 9th CCLK High	15		80	ns
	ATCH TIMING					
tSLC	Setup Time, IL to CCLK 8 of Byte 1	Interface Latch Inputs Only	100			ns
t _{HCL}	Hold Time, IL Valid from 8th CCLK Low (Byte 1)		50			ns
t _{DCL}	Delay Time CCLK 8 of Byte 2 to IL	Interface Latch Outputs Only $C_L = 50 \text{ pF}$			200	ns
ASTER RESE	ET PIN					
t _{WMR}	Duration of Master Reset High		1			μs

Transmission Characteristics Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$; FS_R and FS_X = 8 kHz or 9.6 kHz; $T_A = 0^{\circ}C$ to $+70^{\circ}C$ by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. f = 1015.625 Hz, VF_RI = 0 dBm0, $D_X = 0$ dBm0 PCM code. Transmit and receive gains programmed for maximum 0 dBm0 test levels (0 dB gain), hybrid balance filter disabled. All other limits are assured by correlation with other production tests and/or product design and the production test by correlation with the production tests and/or product design and the production test and product design and the production test and product design and the production test by correlation with the production tests and/or product design and the production test by correlation with the production test and product design and the product desig characterization. All signals referenced to GND. Typicals specified at V_{CC} = +5V, V_{BB} = -5V, T_A = 25° C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
MPLITUDE	RESPONSE					
	Absolute Levels	The Maximum 0 dBm0 Levels are: VF _R I VF _X O (15 kΩ Load)		1.619 1.964		Vrms Vrms
		The Minimum 0 dBm0 Levels are: VF_RI VF _X O (Any Load \geq 300 Ω) Overload Level is 3.17 dBm0		87.0 105.0		mVrm mVrm
G _{RA}	Receive Gain Absolute Accuracy	Receive Gain Programmed for Maximum 0 dBm0 Test Level. (All 1's in gain register) Measure Deviation of Digital Code from Ideal 0 dBm0 PCM Code at D_R $T_A = 25^{\circ}C$	-0.15		0.15	dB
G _{RAG}	Receive Gain Variation with Programmed Gain	Measure Receive Gain Over the Range from Maximum to Minimum Calculate the Deviation from the Programmed Gain Relative to G_{RA} , i.e., $G_{RAG} = G_{actual} - G_{prog} - G_{RA}$ $T_A = 25^{\circ}$ C, $V_{CC} = -5$ V, $V_{BB} = -5$ V	-0.1		0.1	dB
Variatio	Receive Gain Variation with Frequency	Relative to 1015.625 Hz, (Note 4) Minimum Gain $\leq G_R \leq$ Maximum Gain f = 60 Hz f = 200 Hz f = 300 Hz to 3000 Hz f = 3400 Hz f = 4000 Hz f \geq 4600 Hz. Measure Response at Alias Frequency from 0 kHz to 4 kHz $G_R = 0 dB$, VF _R = 1.619 Vrms Relative to 1015.625 Hz	-1.8 -0.15 -0.7		-26 -0.1 0.15 0.0 -14 -32	dB dB dB dB dB dB
		f = 62.5 Hz	- 1.7 - 0.15 - 0.15 - 0.15 - 0.15 - 0.74		-24.9 -0.1 0.15 0.15 0.15 0.15 0.0 -13.5 -32 -32 -32	dB dB dB dB dB dB dB dB dB dB dB dB
G _{RAT}	Receive Gain Variation with Temperature	Measured Relative to $G_{RA},$ $V_{CC}=5V,$ $V_{BB}=-5V,$ Minimum Gain $< G_R <$ Maximum Gain	-0.1		0.1	dB

Transmission Characteristics (Continued) Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$; FS_R and FS_X = 8 kHz or 9.6 kHz; $T_A = 0^{\circ}$ C to $+70^{\circ}$ C by correlation with 100% electrical testing at $T_A = 25^{\circ}$ C. f = 1015.625 Hz, VF_RI = 0 dBm0, $D_X = 0$ dBm0 PCM code. Transmit and receive gains programmed for maximum 0 dBm0 test levels (0 dB gain), hybrid balance filter disabled. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GND. Typicals specified at $V_{CC} = +5V$, $V_{BB} = -5V$, $T_A = 25^{\circ}$ C.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
MPLITUDE	E RESPONSE (Continued)					
G _{RAL}	Receive Gain Variation with Signal Level	$\begin{array}{l} \mbox{Sinusoidal Test Method} \\ \mbox{Reference Level} = 0 \mbox{dBm0} \\ \mbox{VF}_R \mbox{I} = -40 \mbox{dBm0} \mbox{to} + 3 \mbox{dBm0} \\ \mbox{VF}_R \mbox{I} = -50 \mbox{dBm0} \mbox{to} - 40 \mbox{dBm0} \\ \mbox{VF}_R \mbox{I} = -55 \mbox{dBm0} \mbox{to} - 50 \mbox{dBm0} \end{array}$	-0.2 -0.4 -1.2		0.2 0.4 1.2	dB dB dB
G _{XA}	Transmit Gain Absolute Accuracy	Transmit Gain Programmed for Maximum 0 dBm0 Test Level (All 1's in Gain Register). Apply 0 dBm0 PCM Code to D _X . Measure VF _X O. T _A = 25°C	-0.3		0.3	dB
G _{XAG}	Transmit Gain Variation with Programmed Gain	Measure Transmit Gain Over the Range from Maximum to Minimum Setting. Calculate the Deviation from the Programmed Gain Relative to G_{XA} , i.e., $G_{XAG} = G_{actual} - G_{prog} - G_{XA}$. $T_A = 25^{\circ}$ C, $V_{CC} = 5$ V, $V_{BB} = -5$ V	-0.2		0.2	dB
G _{XAT}	Transmit Gain Variation with Temperature	Measured Relative to G_{XA} V_{CC} = 5V, V_{BB} = $-5V$ Minimum Gain $<$ G_X $<$ Maximum Gain	-0.1		0.1	dB
G _{XAF}	Transmit Gain Variation with Frequency		- 0.15 - 0.15 - 0.15 - 0.15 - 0.74		0.16 0.41 0.78 0.82 0.89 - 12.2	dB dB dB dB dB dB
G _{XAL}	Transmit Gain Variation with Signal Level	$\begin{array}{l} \mbox{Sinusoidal Test Method.} \\ \mbox{Reference Level} = 0 \mbox{dBm0} \\ \mbox{D}_X = -40 \mbox{dBm0 to} + 3 \mbox{dBm0} \\ \mbox{D}_X = -50 \mbox{dBm0 to} - 40 \mbox{dBm0} \\ \mbox{D}_X = -55 \mbox{dBm0 to} - 50 \mbox{dBm0} \\ \mbox{D}_X = 3.1 \mbox{dBm0} \\ \mbox{R}_L = 600\Omega, \mbox{G}_X = -0.5 \mbox{dB} \\ \mbox{R}_L = 300\Omega, \mbox{G}_X = -1.2 \mbox{dB} \end{array}$	-0.2 -0.4 -1.2 -0.2 -0.2		0.2 0.4 1.2 0.2 0.2	dB dB dB dB

17

Transmission Characteristics (Continued) Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$; FS_R and FS_X = 8 kHz or 9.6 kHz; $T_A = 0^{\circ}C$ to $+70^{\circ}C$ by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. f = 1015.625 Hz, VF_RI = 0 dBm0, $D_X = 0$ dBm0 PCM code. Transmit and receive gains programmed for maximum 0 dBm0 test levels (0 dB gain), hybrid balance filter disabled. All other limits are assured by correlation with other production tests and/or product design and the production test by correlation with the production tests and/or product design and the production tests and/or product design and the production tests and/or product design and the production test by correlation with the production tests and/or product design and the production test by correlation with the production tests and/or product design and the production test by correlation with the production tests and/or product design and the production test by correlation with the production tests and/or product design and the production test by the production test by the production test by the product design and the production test by the product of the production test by the product design and the product characterization. All signals referenced to GND. Typicals specified at $V_{CC} = +5V$, $V_{BB} = -5V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
NOISE						
N _{RC}	Receive Noise, C Message Weighted	(Note 1) All '1's in Gain Register		12	15	dBrnC0
N _{XC}	Transmit Noise, C Message Weighted	PCM Code is Alternating Positive and Negative Zero		8	11	dBrnC0
N _{XS}	Noise, Single Frequency	$f=0~\text{kHz}$ to 100 kHz, Loop Around Measurement, $\text{VF}_{\text{R}}\text{I}=0~\text{Vrms}$			-53	dBm0
PPSR _R	Positive Power Supply Rejection, Receive	$\label{eq:V_CC} \begin{split} V_{CC} &= 5.0 \; V_{DC} + 100 \; mVrms \\ f &= 0 \; kHz - 4 \; kHz \; (Note \; 2) \\ f &= 4 \; kHz - \; 50 \; kHz \end{split}$	36 30			dBC dBC
NPSR _R	Negative Power Supply Rejection, Receive	$\label{eq:VBB} \begin{split} V_{BB} &= -5.0 \; V_{DC} + 100 \; mVrms \\ f &= 0 \; kHz - 4 \; kHz \; (Note \; 2) \\ f &= 4 \; kHz - 50 \; kHz \end{split}$	36 30			dBC dBC
PPSR _X	Positive Power Supply Rejection, Transmit	$\begin{array}{l} \text{PCM Code Equals Positive Zero} \\ \text{V}_{\text{CC}} = 5.0 \text{ V}_{\text{DC}} + 100 \text{ mVrms} \\ \text{Measure VF}_{\text{X}}\text{O} \\ \text{f} = 0 \text{ Hz}\text{-}4000 \text{ Hz} \\ \text{f} = 4 \text{ kHz}\text{-}25 \text{ kHz} \\ \text{f} = 25 \text{ kHz}\text{-}50 \text{ kHz} \end{array}$	36 40 36			dBC dB dB
NPSR _X	Negative Power Supply Rejection, Transmit	$\begin{array}{l} \text{PCM Code Equals Positive Zero} \\ \text{V}_{\text{BB}} = -5.0 \ \text{V}_{\text{DC}} + 100 \ \text{mVrms} \\ \text{Measure VF}_{\text{X}}\text{O} \\ \text{f} = 0 \ \text{Hz} - 4000 \ \text{Hz} \\ \text{f} = 4 \ \text{kHz} - 25 \ \text{kHz} \\ \text{f} = 25 \ \text{kHz} - 50 \ \text{kHz} \end{array}$	36 40 36			dBC dB dB
SOS	Spurious Out-of-Band Signals at the Channel Output	0 dBm0, 300 Hz to 3400 Hz Input PCM Code Applied at D _X 4600 Hz-7600 Hz 7600 Hz-8400 Hz 8400 Hz-50,000 Hz			-30 -40 -30	dB dB dB
DISTORTIO	N					
STD _R STD _X	Signal to Total Distortion Receive or Transmit Half-Channel	Sinusoidal Test Method Level = 3.0 dBm0 = $0 \text{ dBm0 to } -30 \text{ dBm0}$ = -40 dBm0 = -45 dBm0	33 36 30 25			dBC dBC dBC dBC
STD _{XL}	Signal to Total Distortion Transmit with Resistive Load	$ \begin{array}{l} \mbox{Sinusoidal Test Method} \\ \mbox{Level} = \ + \ 3.1 \ dBm0 \\ \mbox{R}_L = \ 600 \ \Omega, \ G_X = \ -0.5 \ dB \\ \mbox{R}_L = \ 300 \ \Omega, \ G_X = \ -1.2 \ dB \end{array} $	33 33			dBC dBC

Transmission Characteristics (Continued)

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = +5V \pm 5\%$, $V_{BB} = -5V \pm 5\%$; FS_R and FS_X = 8 kHz or 9.6 kHz; $T_A = 0^{\circ}C$ to $\pm 70^{\circ}C$ by correlation with 100% electrical testing at $T_A = 25^{\circ}C$. f = 1015.625 Hz, $VF_RI = 0$ dBm0, $D_X = 0$ dBm0 PCM code. Transmit and receive gains programmed for maximum 0 dBm0 test levels (0 dB gain), hybrid balance filter disabled. All other limits are assured by correlation with other production tests and/or product design and characterization. All signals referenced to GND. Typicals specified at $V_{CC} = \pm 5V$, $V_{BB} = -5V$, $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DISTORTION						
SFD _R	Signal Frequency Distortion, Receive				-46	dB
SFD _X	Single Frequency Distortion, Transmit				-46	dB
IMD	Intermodulation Distortion	Receive or Transmit Two Frequencies in the Range 300 Hz-3400 Hz			-41	dB

Note 1: Measured by grounded input at $\mathsf{VF}_\mathsf{R}\mathsf{I}.$

Note 2: $\mbox{PPSR}_{R}, \mbox{NPSR}_{R},$ are measured with a -50 dBm0 activation signal applied to $\mbox{VF}_{R}I.$

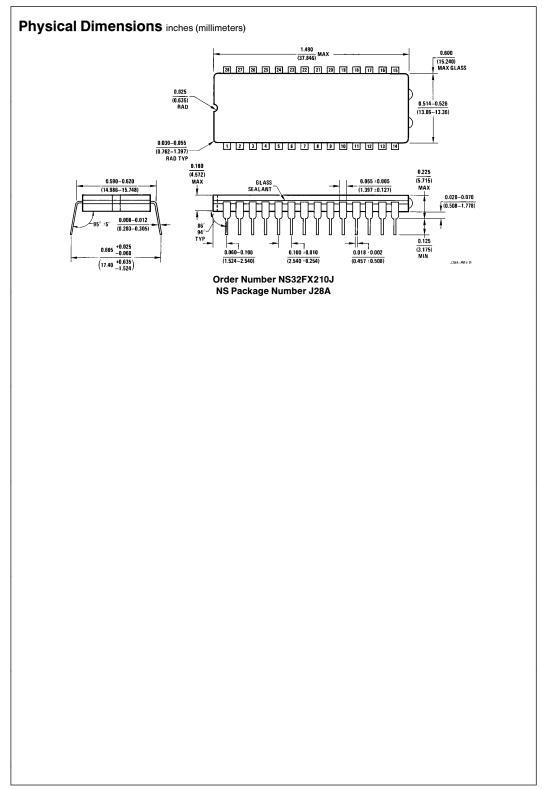
Note 3: A signal is Valid if it is above V_{IH} or below V_{IL} and Invalid if it is between V_{IL} and V_{IH}. For the purposes of this specification the following conditions apply: a) All input signals are defined as: V_{IL} = 0.4V, V_{IH} = 2.7V, t_X < 10 ns, t_F < 10 ns.

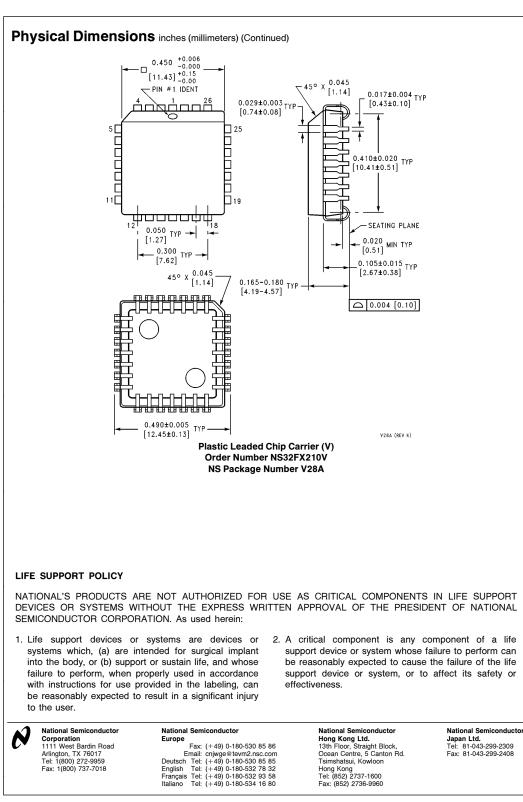
b) t_{R} is measured from V_{IL} to V_{IH} . t_{F} is measured from V_{IH} to V_{IL} .

c) Delay Times are measured from the input signal Valid to the output signal Valid.

d) Setup Times are measured from the data input Valid to the clock input Invalid.

e) Hold Times are measured from the clock signal Valid to the data input Invalid.


f) Pulse widths are measured from V_{IL} to V_{IL} or from V_{IH} to $V_{\text{IH}}.$


Note 4: A multi-tone test technique is used.

Definitions and Timing Conventions

Denni			
DEFINIT		Rise Time	Rise times are designated as $t_{\mbox{Ryy}},$ where yy rep-
V _{IH}	V_{IH} is the D.C. input level above which an input level is guaranteed to appear as a logical one. This parameter is to be measured by performing	TIME	resents a mnemonic of the signal whose rise time is being specified. t_{Ryy} is measured from V_{IL} to $V_{IH}.$
	a functional test at reduced clock speeds and nominal timing, (i.e., not minimum setup and hold times or output strobes), with the high level of all	Fall Time	Fall times are designated as t_{Fyy} , where yy represents a mnemonic of the signal whose fall time is being specified. t_{Fyy} is measured from V _{IH} to V _{IL} .
	driving signals set to V_{IH} and maximum supply voltages applied to the device.	Pulse Width	The high pulse width is designated as t_{WzzH} , where zz represents the mnemonic of the input
V _{IL}	V_{IL} is the D.C. input level below which an input level is guaranteed to appear as a logical zero to the device. This parameter is measured in the	High	or output signal whose pulse width is being specified. High pulse widths are measured from V_{IH} to $V_{IH}. \label{eq:VIH}$
	same manner as $V_{\rm IH}$ but with all driving signal low levels set to $V_{\rm IL}$ and minimum supply voltages applied to the device.	Pulse Width Low	The low pulse width is designated as t_{WzzL} , where zz represents the mnemonic of the input or output signal whose pulse width is being speci-
V _{OH}	V _{OH} is the minimum D.C. output level to which an output placed in a logical one state will converge when logical at the maximum apacified load our		fied. Low pulse widths are measured from $V_{\mbox{\scriptsize IL}}$ to $V_{\mbox{\scriptsize IL}}.$
	when loaded at the maximum specified load cur- rent.	Setup Time	Setup times are designated as t_{Swwxx} , where ww represents the mnemonic of the input signal
V _{OL}	V _{OL} is the maximum D.C. output level to which an output placed in a logical zero state will con- verge when loaded at the maximum specified load current.		whose setup time is being specified relative to a clock or strobe input represented by mnemonic xx. Setup times are measured from the ww Valid to xx Invalid.
Threshold Region	d The threshold region is the range of input voltages between $V_{\mbox{\scriptsize IL}}$ and $V_{\mbox{\scriptsize IH}}.$	Hold Time	Hold times are designated as T _{Hwwxx} , where ww represents the mnemonic of the input signal
Valid Signal	A signal is Valid if it is in one of the valid logic states. (i.e., above $V_{\rm IH}$ or below $V_{\rm IL}$). In timing specifications, a signal is deemed valid at the instant it enters a valid state.		whose hold time is being specified relative to a clock or strobe input represented by the mne- monic xx. Hold times are measured from xx Valid to ww Invalid.
Invalid Signal	A signal is invalid if it is not in a valid logic state, i.e., when it is in the threshold region between $V_{\rm IL}$ and $V_{\rm IH}$. In timing specifications, a signal is deemed Invalid at the instant it enters the threshold region.	Delay Time	Delay times are designated as T_{Dxxyy} [IHIL], where xx represents the mnemonic of the input reference signal and yy represents the mnemon- ic of the output signal whose timing is being specified relative to xx. The mnemonic may op-
TIMING (CONVENTIONS		tionally be terminated by an H or L to specify the high going or low going transition of the output
	ourposes of this timing specification the following ons apply.		signal. Maximum delay times are measured from xx Valid to yy Valid. Minimum delay times are
Input Signals	All input signals may be characterized as: V_L = 0.4V, V_H = 2.4V, t_R < 10 ns, t_F < 10 ns.		measured from xx Valid to yy Invalid. This param- eter is tested under the load conditions specified
Period	The period of the clock signal is designated as t_{Pxx} where xx represents the mnemonic of the clock signal being specified.		in the Conditions column of the Timing Specifica- tions section of this datasheet.

20

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.