

August 1998

File Number

3207.2

Power Control IC Single Chip Power Supply

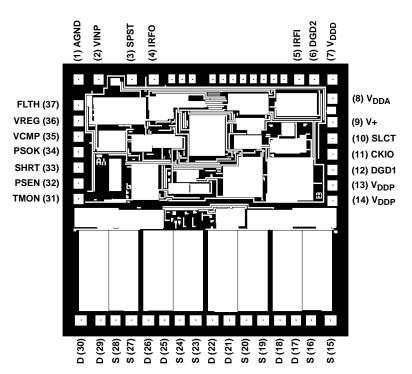
The HIP5060 is a complete power control IC, incorporating both the high power DMOS transistor, CMOS logic and low level analog circuitry on the same Intelligent Power IC. Both the standard "Boost" and the "SEPIC" (Single-Ended Primary Inductance Converter) power supply topologies are easily implemented with this single control IC.

Special power transistor current sensing circuitry is incorporated that minimizes losses due to the monitoring circuitry. Moreover, over-temperature and over-voltage detection circuitry is incorporated within the IC to monitor the chip temperature and the actual power supply output voltage. These circuits can disable the drive to the power transistor to protect both the transistor and, most importantly, the load from over-voltage.

As a result of the power DMOS transistor's current and voltage capability (10A and 60V), power supplies with output power capability up to 100 watts are possible.

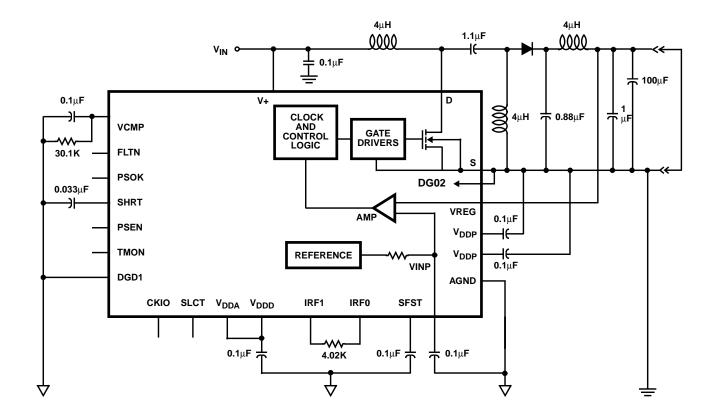
Features

- · Single Chip Current Mode Control IC
- 60V, 10A On-Chip DMOS Transistor
- Thermal Protection
- Over-Voltage Protection
- Over-Current Protection
- 1MHz Operation or External Clock
- Synchronization Output
- On-Chip Reference Voltage 5.1V
- Output Rise and Fall Times ~ 3ns
- Designed for 27V to 45V Operation


Applications

- · Single Chip Power Supplies
- Current Mode PWM Applications
- Distributed Power Supplies
- Multiple Output Converters

Ordering Information


PART NUMBER	TEMPERATURE RANGE	PACKAGE
HIP5060DY	0°C to +85°C	37 Pad Chip
HIP5060DW	0°C to +85°C	Wafer

Chip

NOTE: Unused pads are for trim and test. 153 mils x 165 mils (3.88mm x 4.19mm)

Simplified Block Diagram

TYPICAL SEPIC CONFIGURATION

HIP5060

Absolute Maximum Ratings

Thermal Information

DC Supply Voltage, V+0.3V to 45V	Thermal Resist
DMOS Drain Voltage0.3V to 60V	(Solder Mour
DMOS Drain Current	0.050" Thick
DC Logic Supply0.3V to 16V	Maximum Junc
Output Voltage, Logic Outputs0.3V to 16V	(Controlled B
Input Voltage, Analog and Logic0.3V to 16V	
Operating Junction Temperature Range 0°C to +110°C	
Storage Temperature Range55°C to +150°C	

stance θ_{JC} ınted to 3°C/W Max Copper Heat Sink) By Thermal Shutdown Circuit)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

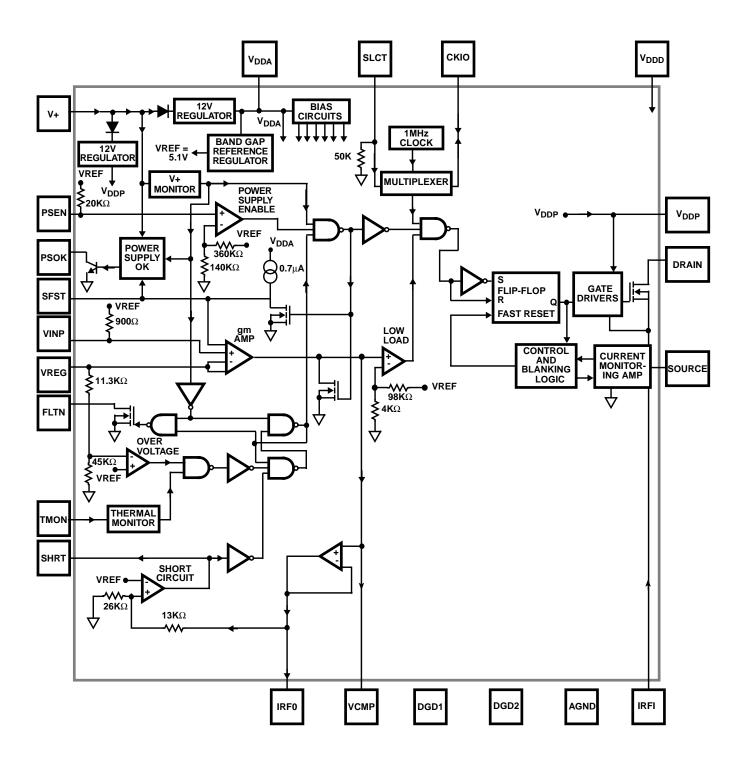
Electrical Specifications V+ = 36V, T_J = 0°C to +110°C; Unless Otherwise Specified

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
DEVICE PARA	METERS	•				
l+	Supply Current	PSEN = 12V	-	19.5	32	mA
V_{DDA}	Internal Regulator Output Voltage	V+ = 15V to 45V, I _{OUT} = 10mA	11.0	-	13.2	V
VINP	Reference Voltage	I _{VINP} = 0mA	5.01	5.1	5.19	V
R _{VINP}	VINP Resistance	VINP = 0	-	900	-	Ω
ERROR AMPL	IFIERS				•	•
V _{IO}	Input Offset Voltage (VREG - VINP)	I _{VCMP} = 0mA	-	-	10	mV
R _{IN} VREG	Input Resistance to GND	VREG = 5.1V	-	56	-	kΩ
g _m (VREG)	VREG Transconductance I _{VCMP} /(VREG - VINP)	VCMP = 1V to 8V, SFST = 11V	15	30	50	mS
g _m (SFST)	SFST Transconductance I _{VCMP} /(VREG - SFST)	V _{SFST} < 4.9V	0.8	-	6	mS
I _{VCMP}	Maximum Source Current	VREG = 4.95V, VCMP = 8V	-2.5	-	-0.75	mA
I _{VCMP}	Maximum Sink Current	VREG = 5.25V, VCMP = 0.4V	0.75	-	2.5	mA
OVTH	Over-Voltage Threshold	Voltage at VREG for FLTN to be latched	6.2	-	6.7	V
CLOCK			•	•	•	
fq	Internal Clock Frequency	SLCT = 0V, V _{DDD} = 12V	0.9	1.0	1.1	MHz
V _{TH} CKIN	External Clock Input Threshold Voltages	SLCT = 12V	33	-	66	%V _{DDD}
DMOS TRANS	SISTORS	•			•	
r _{DS(on)}	Drain-Source On-State Resistance	I Drain = 5A, T _J = +25 ^o C	-	-	0.13	Ω
I _{DSS}	Drain-Source Leakage Current	Drain to Source Voltage = 60V	-	1	100	μА
CURRENT CO	NTROLLED PWM	•				
V _{IO} VCMP	Buffer Offset Voltage (VCMP - VIRFO)	IRFO = 0mA to -5mA, VCMP = 0.2V to 7.6V	-	-	125	mV
V _{TH} IRFO	Voltage at IRFO that disables PWM. This is due to low load current		100	-	270	mV

HIP5060

Electrical Specifications V+ = 36V, $T_J = 0^{\circ}C$ to +110°C; Unless Otherwise Specified (Continued)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
CURRENT CO	NTROLLED PWM (Continued)		•		•	
I _{TH} IRFO	Voltage at IRFO to enable SHRT output current. This is due to Regulator Over Current Condition		7.4	-	8.0	V
I _{SHRT}	SHRT Output Current, During Over-Current	V _{IRFO} = 8.1V	-37	-	-17	μА
V _{TH} SHRT	Threshold voltage on SHRT to set FLTN latch		4	6	8	V
I _{GAIN}	I _{PEAK} (DMOS _{DRAIN})/I _{IRFI}	ΔI (DMOS _{DRAIN})/Δt = 1A/ms	3.8	-	4.9	A/mA
R _{IRFI}	IRFI Resistance to GND	I _{IRFI} = 2mA	150	-	360	Ω
t _{RS} (Note 1)	Current Comparator Response Time	$\Delta I (DMOS_{DRAIN})/\Delta t > 1A/\mu s$	-	30	-	ns
MCPW (Note 1)	Minimum Controllable Pulse Width		25	50	100	ns
MCPI (Note 1)	Minimum Controllable DMOS Peak Current		200	400	800	mA
START-UP	•		•		•	
V+	Rising V+ Power-On Reset Voltage		22	-	27	V
V+	Falling V+ Power-Off Set Voltage		-	15	-	V
V+	V+ Power-On Hysteresis		9	-	12	V
V _{TH} PSEN	Voltage at PSEN to Enable Supply		0.8	-	2.0	V
rpsen	Internal Pull-Up Resistance, to 5.1V		-	20	-	ΚΩ
I _{SFST}	Soft-Start Charging Current	V _{SFST} = 0V to 10V	-1.0	-0.7	-0.4	μΑ
I _{PSOK}	PSOK High-State Leakage Current	SFST = 0V, PSOK = 12V	-1	-	1	μА
V _{PSOK}	PSOK Low-State Voltage	SFST = 11V, I _{PSOK} = 1mA	-	-	0.4	V
V _{TH} SFST	PSOK Threshold, Rising V _{SFST}		9.4	-	11	V
THERMAL MO	NITOR		•	ı		•
TEMP (Note 1)	Substrate Temperature for Thermal Monitor to Trip	TMON pin open	105	-	135	°C


NOTE:

1. Determined by design, not a measured parameter.

Pin Descriptions

A current
ne current ing to the pe greater urrent will w 20A.
ply.
currents of seven,
nal clock. this termi- ad. There
turned to
ors. The MOS
circuit. By he IC into irs at a
turned to
icy com-
internally
This node then over-
u e n

Functional Block Diagram

