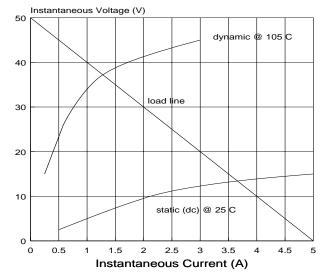

C791A 100mm THYRISTOR PRESSPAK 4500V / 3250A

Type C791A thyristor is suitable for phase control applications such as for HVDC valves, static VAR compensators and synchronous motor drives. The silicon junction design utilizes a second generation pilot gate and a unique orientation of emitter shorts which promote the lateral expansion of conducting plasma resulting in lower spreading losses while achieving high dv/dt withstand. It is supplied in an industry accepted disc-type package, ready to mount using commercially available heat dissipators and mechanical clamping hardware.

<u>REPETITIVE PEAK REVERSE</u>					
AND OFF-STATE BLOCKING					
VOLTAGE					
$T_{r} = 0$ to $125^{\circ}C$					
MODEL					
	V _{DRM} (volts)	V _{RRM} (volts)			
C791ADE	4500	4500			
C791ADD	4400	4400			
C791ADC	4300	4300			
C791ADB	4200	4200			
C791ADA	4100	4100			
C791ADP	4000	4000			

MECHANICAL OUTLINE

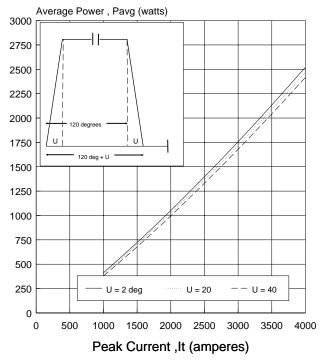
SILICON POWER CORPORATION 175 GREAT VALLEY PKWY. MALVERN, PA 19355 USA

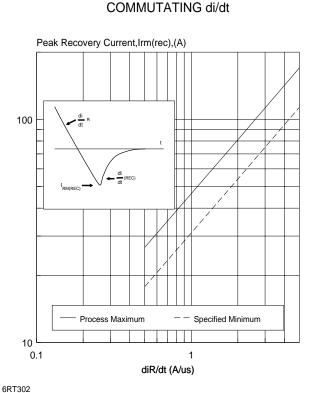

Page 1 Rev. 2 8/97

LIMITING CHARACTERISTICS AND RATINGS

Repetitive peak off- state & reverse volts	V _{drm} V _{rrm}	T _J =0 to 125°C	up to 4500	V
Repetitive working crest voltage	V _{dwm} V _{drm}	T _J =0 to 125°C	$\begin{array}{c} 0.8 V_{_{DRM}} \\ 0.8 V_{_{RRM}} \end{array}$	
Off-state & reverse leakage current	I _{drm} I _{rrm}	T _J =0 to 125°C	450 350	ma
Average on-state current	I _{T(AV)}	T _{case} = 70°C	3250	A
Peak half-cycle non-rep surge current	I _{TSM}	60 Hz 50 Hz	42 38	kA
On-state voltage	\mathbf{V}_{TM}	$I_{T} = 4000A$ $t_{p} = 8.3 ms$ T = 125%	2.00	V
Critical rate of rise of on-state current	di/dt rep	T _J =125°C T _J =125°C 60 Hz	100	A/us
Critical rate of rise of off-state voltage	dv/dt	T _J =125°C V _D =.67V _{DRM}	1000	V/us
Recovery current	I _{RM}	T _J =105°C 2A/us 5A/us	90 195	Α
Turn-on delay	t _d	Vd=.5V _{DRM}	4	us
Turn-off time	T _{off}	5A/us,-100V 20V/us to 2000V	500	us
Thermal resistance	$\mathbf{R}_{\mathrm{thJC}}$.007	c/w
Externally applied clamping force	F		17000 -19000	lbs.

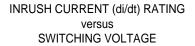
Gate Characteristics and Gate Supply Requirements

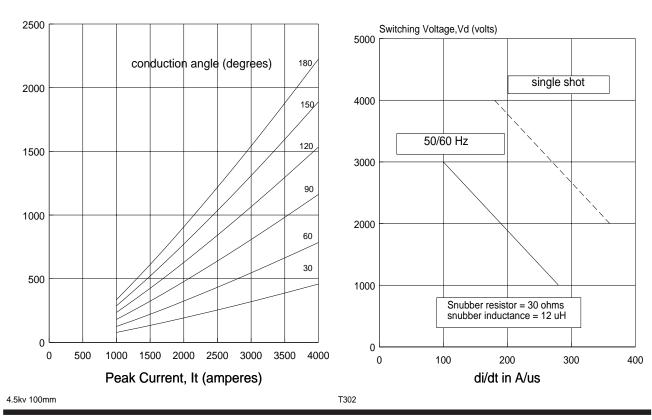

- THYRISTOR GATE IMPEDANCE Enhanced by fast rising gate voltage, increasing anode bias and junction temperature. It is at a minimum for dc current, zero anode bias and low temperature.
- GATE SUPPLY Prefer 50V/10 ohm for supporting the di/dt rating and life expectancy. The short circuit current risetime should be nominally 0.5us and the duration longer than the expected delay time for all magnitudes of anode bias. Practically 10-30us is recommended followed by a back porch of 750ma if needed to sustain conduction.
- MINIMUM ACCEPTABLE GATE CURRENT
 The intersection of the load line and gate impedance
 characteristic indicates the minimum value of actual current
 needed during the delay time interval to support di/dt.A
 different load line meeting this criterion may be used.
- MAXIMUM GATE RATINGS Peak gate power,Pgm(100us) = 300 W Average gate power,Pg(av) = 50W Peak gate current,Igfm = 25 A Peak reverse voltage,Vgrm = 25 V


C791A / T302A

PEAK RECOVERY CURRENT

versus


FULL CYCLE AVERAGE POWER DISSIPATION 120-deg Conduction -includes spread loss as function of Overlap Angle , U



4500V 100mm

FULL CYCLE AVERAGE POWER DISSIPATION Sine Wave - includes spread loss as function of conduction angle

